Data Warehouse e Data Lake: conheça 4 principais diferenças
Estruturas como Data Warehouse e Data Lake costumam ser comuns a profissionais de Tecnologia de Informação (TI) e cientistas de dados. No entanto, líderes que lidam com gestão de documentos e da informação que conhecem esses termos, suas aplicações e vantagens podem usufruir os benefícios de soluções de Big Data.
Você sabe as diferenças entre os dois termos? Confira!
1. Quanto maior, melhor
Ambos funcionam como um depósito de dados, mas em comparação com os Data Warehouses, os Data Lakes são enormes e permitem um acúmulo vasto de informações em um ritmo mais rápido. Com os Lakes é possível inserir elementos de diferentes tipos, e isso, além de permitir um armazenamento maior, também aumenta a descoberta de novas informações e cruzamentos entre os conteúdos analisados.
Os insights extraídos da análise de dados são valiosos, porém podem tomar muito tempo caso o Data Lake esteja desorganizado e mal gerido. É nesse momento que os profissionais de gestão de informação atuam parar garantir a organização da estrutura, como sinalizar os prazos para retenção de informações, demandas do compliance ou da governança corporativa, além de práticas para manter a segurança digital.
2. Flexibilidade
Data Warehouses são configurados para reunir dados relevantes ao negócio. Para isso, é preciso saber que tipo de questões esses elementos responderão, e caso novas demandas surjam, tenha em mente que talvez não sejam atendidas pelo tipo de estrutura preestabelecida.
No caso dos Data Lakes, a informação pode vir de múltiplas fontes e ter variados formatos. Não é necessário definir previamente quais perguntas serão respondidas pelos dados, o que dá mais flexibilidade para criar novos tópicos conforme a necessidade.
3. Colaboração
É pertinente ressaltar que o Big Data é feito por pessoas e para pessoas, afinal, os resultados das análises feitas têm grande importância nos processos organizacionais. Porém, nem sempre está disponível para todos. Os Warehouses muitas vezes ficam isolados e sem acesso da maioria dos funcionários. Os Lakes, por outro lado, permitem que a informação seja compartilhada com vários usuários, além de poder ser agrupada por temas e objetivos.
4. Retorno do investimento
No momento de avaliar os custos da construção dessas estruturas, além da aquisição do equipamento e do sistema, empresas devem considerar potenciais resultados. Data Warehouses demandam um alto investimento de dinheiro e tempo, antes de qualquer fruto a ser colhido, uma vez que necessita de um esquema para cada tipo de dado.
Data Lakes operam de forma mais eficiente. Mesmo que sua construção seja cara, é possível armazenar uma quantidade maior de informações que podem ser analisadas mais amplamente por pesquisadores. Esse fluxo, por sua vez, resulta em mais insights para a empresa, beneficiando o negócio de forma mais assertiva.
*Inon Neves é vice-presidente da Access na América Latina